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LETTER TO THE EDITOR

The density matrix renormalization group for a quantum
spin chain at non-zero temperature

R J Bursill†§, T Xiang‡ and G A Gehring†
† Department of Physics, The University of Sheffield, Sheffield S3 7RH, UK
‡ Interdisciplinary Research Centre in Superconductivity, The University of Cambridge,
Cambridge CB3 0HE, UK

Received 1 August 1996

Abstract. We apply a recent adaptation of White’s density matrix renormalization group
(DMRG) method to a simple quantum spin model, the dimerizedXY chain, in order to assess
the applicability of the DMRG to quantum systems at non-zero temperature. We find that very
reasonable results can be obtained for the thermodynamic functions down to low temperatures
using a very small basis set. Low-temperature results are found to be most accurate in the case
when there is a substantial energy gap.

Since its recent inception, White’s density matrix renormalization group (DMRG) method
has been established as the method of choice for determining static, low-energy properties of
one-dimensional quantum lattice systems [1, 2]. Extensions to the calculation of dynamical
properties [3] and even to the study of low-temperature properties of two-dimensional
systems [4] have been forthcoming. Moreover, Nishino’s formulation of the DMRG for
two-dimensional classical systems [5] has paved the way for the study of one-dimensional
quantum systems at non-zero temperature. In this letter we present what is, to the best of
our knowledge, the first application of the DMRG to the thermodynamics of a quantum
system.

The system that we consider is a simple spin-chain model—the dimerized,S = 1/2,
XY model

H = −
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[
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where Si is a spin-1/2 operator for sitei on an (even) chain ofN sites, with periodic
boundary conditions.

This model is exactly solvable [6]; the Helmholtz free energyψ is given by

−βψ = lim
N→∞

logZN
N

= 1
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where ZN = Tr e−βH is the partition function,β ≡ 1/T is the inverse temperature,
φ(θ) = cosξ(θ)+ γ cos(θ + ξ(θ)), γ ≡ J2/J1,

ξ(θ) = − tan−1 γ sinθ

1+ γ cosθ
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and we have setJ1 = 1. Thermodynamic properties such as the internal energy

u = −∂ βψ
∂β

and the specific heatcV = −β2 ∂u/∂β are readily obtainable from equation (2).
Because of its solvability and the fact that it possesses both gapless(γ = 1) and gapped

(γ 6= 1) excitations, equation (1) presents a useful test model for the extension of the
DMRG to quantum systems at non-zero temperature.

Now Nishino’s formulation of the DMRG applies directly to classical, two-dimensional
spin systems and so in order to apply it to the quantum system (1), we must first invoke
the Trotter–Suzuki method [7]. That is, we make the decompositionH = H1+H2 where

H1 = −J1

N/2∑
i=1

h2i−1,2i H2 = −J2

N/2∑
i=1

h2i,2i+1 (3)

andhi,j ≡ Sxi Sxj + Syi Syj . We then apply the formula

ZN = lim
M→∞

ZMN ≡ lim
M→∞

Tr
[
e−βH1/Me−βH2/M

]M
. (4)

Inserting a collectionσ of 2M complete sets of states into (4) then yields

ZMN =
∑
σ

M∏
j=1

〈σ 2j−1
1 · · · σ 2j−1

N |e−βH1/M |σ 2j
1 · · · σ 2j

N 〉

× 〈σ 2j
1 · · · σ 2j

N |e−βH2/M |σ 2j+1
1 · · · σ 2j+1

N 〉 (5)

where periodic boundary conditionsσ 2M+1
i ≡ σ 1

i , σ
j

N+1 ≡ σ j1 are assumed.

Figure 1. A pictorial representation of the matrices (a)T1(µ
1 · · ·µ2M |σ 1 · · · σ 2M) and (b)

T2(µ
1 · · ·µ2M |σ 1 · · · σ 2M).

Now, because theN/2 terms in the sums (3) commute and act on different pairs of
sites, we have

ZMN =
∑
σ
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Figure 2. A pictorial representation of the initial system block transfer matrix
Ts(σ

′n′µ′|σnµ; σ ′′µ′′). n and n′ = 1, . . . , m = 2 are initial and final states of the system
block which consists of a single site.σ, σ ′′ and σ ′ = ↑ or ↓ and µ,µ′′ and µ′ = ↑ or ↓
are initial, intermediate and final states for the adjacent sites to the left and right of the block
respectively. The intermediate staten′′ of the system block is summed over to produce the
matrix product.

where

τi(σ
′µ′|σµ) ≡ 〈σ ′µ′|eβJih1,2/M |σµ〉 (7)

for i = 1, 2. Moreover,

ZMN =
∑
σ

N/2∏
i=1

T1(σ
1
2i−1 . . . σ

2M
2i−1|σ 1

2i . . . σ
2M
2i )T2(σ

1
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2M
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or

ZMN = Tr T N/2 (9)

whereT ≡ T1T2 is thevirtual transfer matrixand

T1(µ
1 . . . µ2M |σ 1 . . . σ 2M) ≡

M∏
j=1

τ1(µ
2j−1σ 2j−1|µ2j σ 2j ) (10)

T2(µ
1 . . . µ2M |σ 1 . . . σ 2M) ≡

M∏
j=1

τ2(µ
2j σ 2j |µ2j+1σ 2j+1). (11)

The matricesT1 andT2 are depicted graphically in figure 1.
It follows [7] that

ψ = ψ(M) ≡ lim
M→∞

− logλmax

2β
(12)

whereλmax is the eigenvalue ofT with maximal modulus and generally depends on the
Trotter dimensionM.

We may now apply the formulation of the DMRG for transfer matrices to the calculation
of λmax. We commence by defining an initial transfer matrixTs for a single-sitesystem block,
which connects it to adjacent sites to the left and the right, namely

Ts(σ
′n′µ′|σnµ; σ ′′µ′′) =

∑
n′′
τ1(σ

′σ ′′|n′n′′)τ2(n
′′n|µ′′µ). (13)

The initial block, having just one site, hasm = 2 states,n = 1 or 2 (↑ or ↓) (see figure 2).
We next define an initialenvironment blockand associated transfer matrixTe in precisely

the same way:Te ≡ Ts. We define asuperblockusing the system and environment blocks
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Figure 3. A pictorial representation of the superblock, which consists of system and environment
blocks connected by two added sites to form a periodic chain.n1 and n′1 and n2 and n′2 are
initial- and final-state indices for the system and environment blocks respectively.σ1 and σ ′1
andσ2 andσ ′2 are initial and final states for the two added sites. The intermediate statesσ ′′1 and
σ ′′2 are summed over to form the matrix product.

in addition to two added sites, arranged in a periodic fashion (see figure 3). That is, the
superblock transfer matrix is given by

T (σ ′1n′1σ ′2n′2|σ1n1σ2n2) = (T1T2)(σ
′
1n
′
1σ
′
2n
′
2|σ1n1σ2n2) (14)

or

T (σ ′1n′1σ ′2n′2|σ1n1σ2n2) =
∑
σ ′′1 σ

′′
2

Ts(σ
′
1n
′
1σ
′
2|σ1n1σ2; σ ′′1 σ ′′2 )Te(σ

′
2n
′
2σ
′
1|σ2n2σ1; σ ′′2 σ ′′1 ). (15)

At this pointT may be diagonalized to determineλmax and hence theM = 2 approximation
(12) to (2).

In order to proceed to larger lattices, we must augment (expand) the system and
environment blocks. We letn ←→ (p, ν), p = 1, . . . , m, ν = ↑,↓ denote a state for
an augmented-system block, consisting of the initial system block and one site added to the
right. There are nowm′ = 2m = 4 states:n = 1←→ (1,↑), . . . , n = 4←→ (2,↓).

The transfer matrixT ′s for the augmented-system block is defined (see figure 4) by

T ′s (σ ′n′µ′|σnµ; σ ′′µ′′) ≡
∑
ν ′′

Ts(σ
′p′ν ′|σpν; σ ′′ν ′′)τ1(ν

′ν ′′|µ′µ′′). (16)

An augmented-environment block is defined in a similar way, this time adding a site to the
left, namely

T ′e(σ ′n′µ′|σnµ; σ ′′µ′′) ≡
∑
ν ′′

Te(σ
′p′ν ′|σpν; σ ′′ν ′′)τ2(σ

′′σ |ν ′′ν). (17)

Now, the superblock and its associated transfer matrix (15) can once again be formed using
the augmented blocks withm′ 7−→ m, T ′s 7−→ Ts and T ′e 7−→ Te. Moreover, the process
can be iterated, each time augmenting the system and environment blocks to the right and
the left respectively.

However, in order to prevent the superblock basis from becoming too large, we must
truncate it by capping the number of system (and environment) block states,m, which
in principle doubles every iteration. To do so, we form reduced density matrices for the
augmented blocks by performing an appropriate partial trace on the projection operator
|ψmax〉〈ψmax| formed from the eigenstate|ψmax〉 of T corresponding to the eigenvalueλmax.
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Figure 4. A pictorial representation of the (a) augmented-system and (b) augmented-environment
blocks, which consist of the old blocks augmented by adding sites to the right and the left
respectively.n andn′ = 1, . . . , m′ are the initial and final states of the new (augmented) block
which consists of the old block (p andp′) augmented with an added site (ν andν′). σ, σ ′′ and
σ ′ andµ,µ′′ andµ′ are state indices for the adjacent sites. The intermediate stateν ′′ of the
added site is summed over to produce the matrix product.

That is, for the augmented-system block, the density matrixρs is defined by

ρs(n
′|n) ≡

∑
σ1n2

〈σ1n
′
1σ
′
2n2|ψmax〉〈ψmax|σ1n1σ2n2〉 (18)

wheren←→ (n1, σ2) andn′ ←→ (n′1, σ
′
2). For the augmented-environment block we have

ρe(n
′|n) ≡

∑
σ1n1

〈σ1n1σ
′
2n
′
2|ψmax〉〈ψmax|σ1n1σ2n2〉 (19)

with n ←→ (n2, σ2) and n′ ←→ (n′2, σ
′
2). Eigenvalues and eigenvectors of the density

matrices are then found, namely

{ω(s)n , |n〉(s): n = 1, . . . , m′} and qs{ω(e)n , |n〉(e): n = 1, . . . , m′}
for ρs andρe respectively where 1> ω

(i)
1 > ω

(i)
2 > · · · > ω

(i)
m′ for i = s or e.

In proceeding to the next iteration then, we represent the augmented-block transfer
matricesT ′s and T ′e in terms of the density matrix eigenvectors and truncate the block
Hilbert spaces so as to retain only them most important states, namely
m′∑

n′′,n′′′=1

〈n′|n′′〉(i)T ′i (σ ′n′′µ′|σn′′′µ; σ ′′µ′′)(i)〈n′′′|n〉 7−→ Ti(σ
′n′µ′|σnµ; σ ′′µ′′) (20)
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Figure 5. Exact and DMRG results for the Helmholtz free energyψ as a function of temperature
T for two cases:γ = 1 andγ = 2.

Figure 6. Exact and DMRG results for the internal energyu as a function of temperatureT for
two cases:γ = 1 andγ = 2.

for i = s and e,n, n′ = 1, . . . , m and wherem is the chosen cap on the number of states
per block.

Now, T is a large, sparse, non-symmetric matrix, for which efficient algorithms for
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Figure 7. Exact and DMRG results for the specific heatcV as a function of temperatureT for
two cases:γ = 1 andγ = 2.

the determination ofλmax and |ψmax〉 are becoming available. So far we have simply used
Schur decomposition and the inverse power method to perform this task. We have thus
only been able to work withm = 16. Results forψ, u and cV for γ = 1 (pureXY ) and
γ = 2 (dimerizedXY ) are given in figures 5–7.

Finite-M resultsψ(M) are obtained by fixing the inverse temperatureβ = β0 in the
expressions (7) and increasing the superblock size 2M, beginning withM = 2, so at
each iteration the temperature is identified asT = 1/Mβ0. For theβ0-values that we have
considered (0.05–0.2) there is a small error due to the finiteness of the Trotter decomposition
but this is negligible compared with the error due to Hilbert space truncation, a result which
is easily verified by considering the exact solution forψ(M) [7]. A typical calculation, using
NAG library routines on a 333 MHz DEC Alpha machine, takes six hours to generate a
superblock size of 2M = 300.

We note that convergence at low temperatures is far better for the gapped system
(γ = 2). However, even in the gapless case, the peak position and peak height in the
specific heat are afflicted by errors of only about 3%, and results may be improved markedly
by using larger values ofm and the finite-lattice method [1]. Also, results foru and cV
are obtained by numerically differentiating spline fits of the computedψ(M)-values, and so
improvements may be obtained by combining results from a number of differentβ0-values.

Note that, at any given iteration, the DMRG usually works with a chain which is
spatially finite. Here the chain is infinite and the finiteness is in the level of the Trotter
approximation. Another difference is that the DMRG usually produces its best results for
the ground-state energy and less accurate results for higher excitations. A different situation
occurs here—the lower the temperature, the less accurate the result. Even so, as can be seen
in figure 5, the exact ground-state energy, limT→0ψ , is recovered with reasonable accuracy,
especially in the gapped caseγ = 2.
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Finally, we note that, asT is non-symmetric, the use of a truncated basis will not in
general lead to a variational lower bound onλmax. However, in practice it can be seen, for
instance, that the DMRG result for the internal energyu is always bounded above the exact
value.

To conclude, we have applied the DMRG to a quantum spin chain at non-zero
temperature, making use of Nishimo’s adaptation of the method to 2D classical systems.
Reasonable results are obtained for the specific heat down to low temperatures in calculations
involving an extremely small basis set, agreement with the exact solution being markedly
better in the case where the system has a substantial gap. The approach may prove useful
in determining thermodynamic properties of models of experimentally realizable systems
such as coupled chains and models with anisotropy, dimerization and frustration.

RJB gratefully acknowledges the support of the SERC grant No GR/J26748. Computations
were performed on the DEC 8400 facility at CLRC.
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